Elmomc Multi-Axis Motion Controller-Maestro Motion Contro Bedienungsanleitung Seite 1

Stöbern Sie online oder laden Sie Bedienungsanleitung nach Hardware Elmomc Multi-Axis Motion Controller-Maestro Motion Contro herunter. ElmoMC Multi-Axis Motion Controller-Maestro Motion Control User Manual Benutzerhandbuch

  • Herunterladen
  • Zu meinen Handbüchern hinzufügen
  • Drucken

Inhaltsverzeichnis

Seite 1 - Motion Control

Motion Control Library Tutorial January 2007 (Ver. 1.0)

Seite 2

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 7

Seite 3 - Contents

For this operator to work properly, the first line of the PVT table containing a text header must be removed. plot3(posX,posY,posZ) axis square; grid

Seite 4 - 1.2 Vector properties

Figure 1-5: Projection on the XZ plane Example (Motion Mathematic Lib Samples\ Vector_3D \ Helix – www.elmomc.com)

Seite 5 - ΔT = 0.5(vxt + vnt)

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 10 Yc = Y - R*sin(Teta) // X coordinate of the helix axis v2.splines()

Seite 6 - 1.3.3 Spline

Inside the polyline operator parenthesis vector_name.starts(trj_name) and vector_name.ends() can be added function calls – addline(), addcircle(), add

Seite 7

3. vsc = 2 – ML builds switch arc with the switch radius vsr (this parameter must be set by the user). 4. vsc = 3 - ML builds a swit

Seite 8 - a = 100000

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 13

Seite 9

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 14 Figure 1-8: Recording of

Seite 10 - MAN-INTUG (Ver. 1.7)

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 15 Figure 1-9: Three-dimensional polygon drawn in

Seite 11

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 16 Figure 1-11: Pr

Seite 12

Notice This tutorial is delivered subject to the following conditions and restrictions:  This tutorial contains proprietary information belongi

Seite 13 - 1.3.4 Polyline

In fact, the value defined as r ≥ (vse) 2/(vae*vac ) (by default vae = 0.9) must be used in the calculations. 2. Implicitly pre-defined by the us

Seite 14

Input parameters and intersection geometry define the influence of a switch arc on a trajectory. The main cases of shapes intersection are considered

Seite 15

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-1 Chapter 2: Switch Radius Calculation 2.1 Line – line intersection If a traje

Seite 16

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-2 vsr ≤ min(0.5ΔL1, 0.5ΔL2)*tg(γ/2)

Seite 17 -

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-3 r_max = dmax*tg(γ/2) = 50000* tg(0.5*0.1974) = 4951 This value is limiting a

Seite 18

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-4 vse = [r_switch*vac*vae]1/2 = [4455.9*500000*0.9]1/2 = 44778.9 Example 2.1c

Seite 19

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-5 Line 1 is defined by its init point (300000, 900000) and end point (700000,2

Seite 20

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-6 2.2 Circle – line intersection Note: C – circle arc, L – line, R – circle

Seite 21

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-7 Figure 2-2 Example 2-2 (Motion Mathematic L

Seite 22 - MAN-MLT (Ver 2.0)

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-8 Yp = Yc + K*(Xp – Xc) = 0 +0.7*(-46979 - 0) = -32885 And the perpendicular l

Seite 23

Contents Chapter 1: General Description ...11.1 Introduct

Seite 24

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-9 The length of the perpendicular h should also be calculated. By knowing the

Seite 25

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-10 Figure 2-4 In our calculations was not taken in account add

Seite 26

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-11 r = ρ1ρ2/(ρ1 + ρ2)

Seite 27

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-12 ρ1= 100000 - |C/B| = 100000 - |(-3464101600.0)/(-90000)| = 61509.98222

Seite 28

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-13 Figure 2-7 This condition is not always sufficient. Adequacy depends on a

Seite 29

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-14 Figure 2-8 Example 2-9 (Motion Mathematic Lib Samples\Circle to Line\ Se

Seite 30

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-15 Figure 2-9 Projection of the circle arc init point P1 on the line L does

Seite 31

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-16 Figure 2-10 Example 2-11 (Motion Mat

Seite 32

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-17 2.2.1.3 Line intersects the center of the circle Consider the last case of

Seite 33 - r = ρ

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-18 Figure 2-13 Example 2-14 (Motion Mathematic Lib Samples\Circle to Line\ S

Seite 34 - ) and an

Chapter 1: General Description 1.1 Introduction The Motion Library (ML) produces trajectories based on the PVT mechanism. It implements a set of fun

Seite 35

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-19 c) The circle arc sweeps an angle less than 90o and a perpendicular droppe

Seite 36

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-20 By (a1.6) we have Xp = (Yo – Y1 + kX1 – qXo)/(k – q) = (–80000 + 56569 – 5

Seite 37

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-21 ρ[(Xp,Yp),(X1,Y1)] = r

Seite 38

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-22

Seite 39 - β = 135

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-23 that produces r = [R2 – (ρ1)2 – (ρ3)2]/(2R + 2ρ1)

Seite 40

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-24 2.2.2.3 Circle center (Xc,Yc) Є L1 (line L1 intersects the center of the c

Seite 41 - 2-16

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-25 1. Circle init radius intersects with the line L continued in its positive

Seite 42

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-26 or rd = hd – hR – hr

Seite 43

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-27 Figure 2-24 2.2.3.2 Line parallel to the circle arc init radius a) Li

Seite 44 - 2-19

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-28 Figure 2-25b Maximum switch radius is perpendicular to the line L at the

Seite 45

general trajectory time (vtt) switch arc definitions (vsc, vsr, vsd) admissible velocity and position errors definitions (vpe,vve) PVT step low and hi

Seite 46

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-29 3. Know trajectory init point P2(X2,Y2), calculate ρ2 = ρ(p2, p1) = [(X2

Seite 47 - . The length of h

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-30 By (a3.6)-(a3.7) from Appendix 3. q1 = ΔX1/ΔY1= (34641-0)/(20000-0) = 1.732

Seite 48

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-31 2.3.1 One of two circle arcs intersects the internal area of the second If

Seite 49 - (2.2.3.2-1)

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-32 (Xo – Xc2)2 + (Yo – Yc2)2 = (R2 – r)2

Seite 50 - Example 2-27

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-33 (C1)2 + (C2)2 – 1 = [(X2 – X1)/d]2 + [(Y2 – Y1)/d]2 – 1 = d2/d2 – 1 = 0

Seite 51

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-34 (rC1 + C3)2 + (rC2 + C4)2 = (R2 – r)2

Seite 52 - Figure 2-28

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-35 (X2 + 65000)2 + (– 35000)2 = 1000002 that produces X2 = -158675. d = |X2 –

Seite 53

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-36 From (2.3.1-27) Figure 2-31 XoR1 – X1R1 = r(Xc1 – X1)

Seite 54

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-37 r2 C12 + (2C1C3)r + C32 + r2C22 + (2C2C4)r + C42 = r2 + (2R2)r + R22

Seite 55

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-38 Substituting into (4.1-32) (X2 + C1r – Xc1)2 + (Y2 + C2r – Yc1)2 =

Seite 56

1.3 Trajectory generation 1.3.1 Line Target position for a line is defined by the parameters of the function line(): Two-dimensional line V1.line(x,y)

Seite 57

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-39 2.3.2 Each circle intersects the internal area of the second Figure 2-33 sh

Seite 58

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-40 This system is similar to (2.3.2-2) – (2.3.2-4) and comes to the same solut

Seite 59

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-41 C1 = (X1 – Xc2)/R2 = -0.866025 C2 = (Y1 – Yc2)/R2

Seite 60

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-42 This system is similar to (4.2) – (4.4) and comes to the same solution r =

Seite 61

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-43 Consider the case that the sweep angle of the first circle is β1 < 90 an

Seite 62

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-44 r2C5 + rC6 + C7 = 0

Seite 63

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-45 So for r, the results are: r = –C7/C6

Seite 64

Appendix A: Projection of a point on a line defined by the end points The line L is defined by its end points P1(X1,Y1) and P2(X2,Y2). Drop a perpendi

Seite 65

Y is from (a1.4). Coordinates (X,Y) of the intersection point line L and perpendicular are coordinates of projection point (Xp,Yp). Having got a proje

Seite 66

Appendix B: Coefficients of the line standard equation for the line defined by the end points If the line L is defined by its end points (X1,Y1) and

Seite 67 - Maestro Software Manual

Other popular types of splines like Bezier curves, B- splines or NURBS are usually not interpolation but smoothing splines. The spline curve does

Seite 68 - MAN-MLT(Ver. 2.0)

Appendix C: Intersection point of two lines defined by the end points Line L1 is defined by its end points P1(X1,Y1) and P2(X2,Y2). Line L2 is defined

Seite 69

or (X3 – X1)/∆X1 = (Y – Y1)/∆Y1 (a3.10) and f

Seite 70

Appendix D: Circle – line intersection points The line is defined by its end points (X1,Y1) and (X2,Y2). The circle is defined by its radius R and c

Seite 71 - MAN-MLT (Ver. 2.0)

1.3.3.1 Examples for the two-dimensional spline interpolation Example Example (Motion Mathematic Lib Samples\ Vector_2D \ Spline_Ellipse – www.elmomc.

Seite 72

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 6 for t = 0:pi/72:2*pi x = R*cos(3*t) y = R*sin(5*t) v1.splinep(x,y) // add spline po

Kommentare zu diesen Handbüchern

Keine Kommentare